Aggregation mechanisms

Aggregation mechanisms, Collaboration Culture, Complexity, Decision Making/Problem Solving, Emergence/Self-organization, Examples/Cases, Governance/Leadership, Group Performance, Participation, Politics/Democracy

Scaling is a big challenge for Collective Intelligence

Crecimiento_escaladoIt seems quite clear that the new “collaborative economy” is a good example of how advances in Collective Intelligence can add a lot of value through mechanisms like “collective filtering” attenuating the impact of “the Paradox of Choice”. The Basque consultant Julen Iturbe explains it very well in a blog post: As collaborative products and services eliminate scarcity of professional services and can be provided by anyone with a resource (a room at home, a seat in the car…) to spare, we face a hitherto unknown problem: “the offer can overwhelm our capacity to deal with it”, and this is when we really have to talk about getting attention.

I don’t think that these initiatives will die being over bloated and hypertrophic as Julen suggests. This will not happen because abundance automatically tends to create its own selection mechanisms. New P2P intermediaries like Airbnb know this very well. Indeed their differentiation efforts are now centered on two aspects: 1) recruitment, 2) filtering.

However overwhelming the offer, there will always be a way to get on to the “front page” without being dragged down by Schwartz’s paradox. I am a frequent client of Airbnb and my choices are based on the comments of people that have stayed in the rooms I am checking. It may well be that this filtering mechanism is not optimal and doesn’t quite satisfy expectations, but the same is true of the offer of more traditional middlemen such as Booking or Trivago.

Obviously there is no easy solution. I believe that the challenge lies midst metadata and comment/reputation management. The problem of “attention distribution” that is created by abundance cannot be solved by shouting louder, we must improve the mechanisms that help separate the signal from the noise. But what is really interesting is that the problem of choosing a room with Airbnb in Paris is very similar to the problem of scaling as the number of members of a collective. The more people intervening in a dialogue, the greater the risk of it “overwhelming our capacity to deal with it”. Read more ›

by × June 2, 2015 × 0 comments

Aggregation mechanisms, Collaboration Culture, Crowdsourcing/Co-creation, Decision Making/Problem Solving, Emergence/Self-organization, Governance/Leadership, Participation, Politics/Democracy

10+1 attributes of ideal challenges for Collective Intelligence


Not all problems are equally suited to a collective approach. In this post I propose a way of typifying problems most likely to be successfully treated with CI. Here is a list of 11 attributes of a task or challenge that give reason to believe it is particularly suited for the use of Collective Intelligence. The greater the number of these attributes presents in a certain problem, the greater the chance it is wise to go for a collective stand:

1.- Geographically highly disperse data that is costly to collect: Situations in which collecting and aggregating large amounts of data can significantly improve our analysis but in which this data is so highly dispersed that it is expensive and cannot viably be gathered by a small group of agents.

2.- Vastly varying views when interpreting the problem: When a problem, or its interpretation, can be seen in different lights, depending on the interests, roles and experience of different agents in relation to the challenge, it would seem a good idea to create a collective space in which these differing perspectives can meet. CI is favorable if diversity is a factor that affects the quality of the final results.

3.- Multidisciplinary nature: Situations that may coincide with previous attribute, but in this case refer to cognitive diversity (neither roles nor interests, differing paradigms) that requires the solution of a complex problem with inputs from different fields of knowledge. As we shall see, the greater the mutidisciplinarity of a problem, the more can be gained with CI because participating agents will self-select and no point of view, that can add value to the analysis, will be lost. Read more ›

by × May 31, 2015 × 0 comments

Aggregation mechanisms, Collaboration Culture, Examples/Cases

Lévy vs. Surowiecki: Collective Intelligence with no Collaboration?

Musical group_Stoney Lane

One of the things I have had trouble explaining when defining the concept of Collective Intelligence is the preceding headline. That is, there are situations that can lead to Collective Intelligence (CI) in which individuals do not interact directly or are even conscious of the fact they form part of the collective.

The MIT Centre for Collective Intelligence and many well-known authors in the field admit both the results of non-conscious aggregations and the consequences of active collaboration as manifestations of CI. In James Surowiecki’s “The Wisdom of Crowds”, the book that popularized CI, there are plenty of examples based on pure statistical aggregation, that is, without any direct interaction among participants.

To make the differences between modalities clearer I use the terms “Collected” and “Collaborative” Collective Intelligence. Let me explain both. Read more ›

by × May 26, 2015 × 2 comments

Aggregation mechanisms, Collaboration Culture, Decision Making/Problem Solving, Group Performance

Wiser, Groupthink and the Common Knowledge Effect

Wiser menI have finished reading “Wiser”, the latest book by the North American jurist and academic Cass Sunstein, co-authored by the Chicago University professor Reid Hastie. It was published in January 2015, so the print is still quite fresh. The book is mainly of interest because it covers factors that give rise to (and can inhibit) Groupthink.

As you may remember, “Groupthink” is a term coined in the seventies by the psychologist Irving Janis, naming those situations where individuals participating in a group adapt and submit to the collective opinion even if it differs from their own point of view. The more cohesive the group the stronger the bias, because the social (and informational) pressure that generate cohesion affect the individuals’ capacity to make good use of their private information sources, thus gravitating to the groups’ central opinion. The consequences of this behavior are negative. Groups end up making bad or irrational decisions because the diversity of opinions of the individual group members are not aggregated efficiently.

Wiser” addresses this issue in two parts. The first half of the book analyses the factors that lead to different cognitive biases when groups are at work as a collective. The second presents different palliative measures for the Groupthink effect.

This subject has been approached by many authors. James Surowiecki, in “The Wisdom of Crowds” analyses this phenomenon in some depth (with plenty of examples), reminding us once more that “as a group becomes more cohesive, the individual becomes more dependent“. Reducing the adverse effect of Groupthink is one the greatest challenges in the practice of Collective Intelligence. Read more ›

by × May 20, 2015 × 0 comments

Aggregation mechanisms, Emergence/Self-organization, Group Performance

Collective Intelligence as a process of aggregation

Collective artThe most referenced concept of “Collective Intelligence” is the one of the MIT Center of Collective Intelligence (CCI): “Groups of individuals acting collectively in ways that seem intelligent”. I already said that it seems to me a weak definition because it is too vague and because it has a limited operative value.

I understand the reasons of the CCI to define a conceptual framework as flexible as possible, especially considering that it is indeed an emerging area of ​​study and it is intended to highlight the inter-disciplinary nature of this field. But even so, I think that trying to fit all the possible definitions in a politically correct one leads to a decaffeinated definition, whose main weakness is that it is not useful to discern.

A good concept is not one that tries to adapt to all existing perspectives, but the one that helps to understand the limits of the identity of something, that is to say, what do we leave inside and outside of the subject we try to define. In fact, often the most effective way to test the reliability of a concept is to see how much it helps to leave things out, that is, it serves to discern. Read more ›

by × June 30, 2014 × 8 comments

Aggregation mechanisms, Decision Making/Problem Solving, Examples/Cases, Group Performance

Can you predict the intelligence of a group?

Team buildingI bring here a version of an article published on the website of Emotools almost a year ago: “¿Qué factores predicen que un grupo sea más inteligente?”. Perhaps it seems an old article, but it is worth because it fits the main object of this blog and complements other entries. It was one of the issues most cited in Collective Intelligence MIT Conference 2012 held in Cambridge (Boston) two years ago. This research was done by a team formed by Anita Woolley (Carnegie Mellon) and Christopher Chabris (Union College/MIT), among others, whose results were published in the journal Science with a significant media impact.

By explain in a few words, the challenge was to find out if there are any factors that measure and explain the “intelligence of a group” as an ability to solve tasks by a group in the same way that there is an “Intelligence Quotient(IQ) that estimates the degree of individual intelligence. Hence was born the so-called “C-factor“, which is the counterpart of the IQ coefficient but at a group level. Read more ›

by × May 5, 2014 × 0 comments